Processing and visualising trends in the binary data (presence or absence of electropherogram peaks), obtained from fragment analysis methods in molecular biology, can be a time-consuming and often cumbersome process. Scoring and analysing binary data (from methods, such as AFLPs, ISSRs and RFLPs) entail complex workflows that require a high level of computational and bioinformatic skills. The application presented here (BinMat) is a free, open-source and user-friendly R Shiny programme (https://clarkevansteenderen.shinyapps.io/BINMAT/) that automates the analysis pipeline on one platform. It is also available as an R package on the Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/web/packages/BinMat/index.html). BinMat consolidates replicate sample pairs of binary data into consensus reads, produces summary statistics and allows the user to visualise their data as ordination plots and clustering trees without having to use multiple programmes and input files or rely on previous programming experience.
CITATION STYLE
van Steenderen, C. (2022). BinMat: A molecular genetics tool for processing binary data obtained from fragment analysis in R. Biodiversity Data Journal, 10. https://doi.org/10.3897/BDJ.10.E77875
Mendeley helps you to discover research relevant for your work.