Fe-doped TiO2/Kaolinite as an antibacterial photocatalyst under visible light irradiation

5Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

In this work, undoped and Fe-doped TiO2 immobilized on kaolinite surface was successfully synthesized by sol-gel method with various Fe concentrations (0.05, 0.125, and 0.25 wt%). The effects of Fe doping into TiO2 lattice were thoroughly investigated by a diffuse reflectance UV-visible (DRS) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The optical band gap of undoped and Fe-doped TiO2/kaolinite is red shifted with respect to the incorporation of Fe3+ into the structure of TiO2 resulted band gap. The FTIR spectra shows a shift of peak at the wave number at 586 cm−1 and 774 cm−1 which is attribute of the Fe−O vibration as an indication of the formation of Fe-TiO2 bonds. Incorporation of Fe3+ cation into the TiO2 lattice replacing the Ti4+ ions, which induced a perturbation in anatase crystal structure, causes the change in the distance spacing of the crystal lattices dhkl (101) of 8.9632 to 7.9413. The enhanced photocatalytic performance was observed for Fe-doped TiO2/kaolinite compared with TiO2/kaolinite with respect to Escherichia coli growth inhibition in solution media under visible light irradiation.

Cite

CITATION STYLE

APA

Aritonang, A. B., Pratiwi, E., Warsidah, W., Nurdiansyah, S. I., & Risko, R. (2021). Fe-doped TiO2/Kaolinite as an antibacterial photocatalyst under visible light irradiation. Bulletin of Chemical Reaction Engineering and Catalysis, 16(2), 293–301. https://doi.org/10.9767/bcrec.16.2.10325.293-301

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free