Silicon oxycarbide (SiOC) has recently regained attention in the field of Li-ion batteries, owing to its effectiveness as a host matrix for nanoscale anode materials alloying with Li. The SiOC matrix, itself providing a high Li-ion storage capacity of 600 mA h g-1, assists in buffering volumetric changes upon lithiation and largely suppresses the formation of an unstable solid-electrolyte interface. Herein, we present the synthesis of homogeneously embedded Sb nanoparticles in a SiOC matrix with the size of 5-40 nm via the pyrolysis of a preceramic polymer. The latter is obtained through the Pt-catalyzed gelation reaction of Sb 2-ethylhexanoate and a poly(methylhydrosiloxane)/divinylbenzene mixture. The complete miscibility of these precursors was achieved by the functionalization of poly(methylhydrosiloxane) with apolar divinyl benzene side-chains. We show that anodes composed of SiOC/Sb exhibit a high rate capability, delivering charge storage capacity in the range of 703-549 mA h g-1 at a current density of 74.4-2232 mA g-1. The impact of Sb on the Si-O-C bonding and on free carbon content of SiOC matrix, along with its concomitant influence on Li-ion storage capacity of SiOC was assessed by Raman and 29Si and 7Li solid-state NMR spectroscopies.
CITATION STYLE
Dubey, R. J. C., Sasikumar, P. V. W., Cerboni, N., Aebli, M., Krumeich, F., Blugan, G., … Kovalenko, M. V. (2020). Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 12(25), 13540–13547. https://doi.org/10.1039/d0nr02930k
Mendeley helps you to discover research relevant for your work.