We tested whether snow gum (Eucalyptus pauciflora) trees growing in thermally contrasting environments exhibit generalizable temperature (T) response functions of leaf respiration (R) and fluorescence (Fo). Measurements were made on pot-grown saplings and field-grown trees (growing between 1380 and 2110m a.s.l.). Using a continuous, high-resolution protocol, we quantified T response curves of R and Fo - these data were used to identify an algorithm for modelling R-T curves at subcritical T's and establish variations in heat tolerance. For the latter, we quantified Tmax [T where R is maximal] and Tcrit [T where Fo rises rapidly]. Tmax ranged from 51 to 57°C, varying with season (e.g. winter>summer). Tcrit ranged from 41 to 49°C in summer and from 58 to 63°C in winter. Thus, surprisingly, leaf energy metabolism was more heat-tolerant in trees experiencing ice-encasement in winter than warmer conditions in summer. A polynomial model fitted to log-transformed R data provided the best description of the T-sensitivity of R (between 10 and 45°C); using these model fits, we found that the negative slope of the Q10-T relationship was greater in winter than in summer. Collectively, our results (1) highlight high-T limits of energy metabolism in E.pauciflora and (2) provide a framework for improving representation of T-responses of leaf R in predictive models. © 2012 John Wiley & Sons Ltd.
CITATION STYLE
O’Sullivan, O. S., Weerasinghe, K. W. L. K., Evans, J. R., Egerton, J. J. G., Tjoelker, M. G., & Atkin, O. K. (2013). High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant, Cell and Environment, 36(7), 1268–1284. https://doi.org/10.1111/pce.12057
Mendeley helps you to discover research relevant for your work.