Spreading depression (SD) is a pathophysiological phenomenon characterized by propagating waves of profound neuronal and glial depolarization in central nervous system gray matter. Although SD is primarily mediated by neurons with a subsequent astrocytic response, it remains unclear how astrocytic activity is modulated after SD and how altered astrocyte signaling contribute to neuronal excitability. Here, we report that after the concurrent Ca2+ wave, SD enhanced astrocytic activity by promoting a secondary period of Ca2+ oscillations. SD-induced Ca2+ oscillations did not require the activation of metabotropic glutamate receptors or purinergic receptors; instead, they were mediated by the activation of GABAB receptors and 1,4,5-trisphosphate (IP3) receptors. Furthermore, SD increased the number of NMDA receptor-mediated slow inward currents (SICs) in CA1 pyramidal neurons. The frequency of SD-induced SICs was reduced by blockade of GABAB receptors or by limiting Ca2+ efflux from the ER. Selective inhibition of astrocytic Ca2+ signals by dialysis of BAPTA into astrocytes or by knocking out the astrocytic type of IP3 receptors suppressed SICs after SD. These results demonstrated a causative link between the SD-induced Ca2+ oscillations and the enhanced glutamatergic astrocyte-neuron signaling. Therefore, we conclude that SD enhances the astrocyte Ca2+ signals and further promotes gliotransmission and neuronal excitability.
CITATION STYLE
Wu, D. C., Chen, R. Y. T., Cheng, T. C., Chiang, Y. C., Shen, M. L., Hsu, L. L., & Zhou, N. (2018). Spreading depression promotes astrocytic calcium oscillations and enhances gliotransmission to hippocampal neurons. Cerebral Cortex, 28(9), 3204–3216. https://doi.org/10.1093/cercor/bhx192
Mendeley helps you to discover research relevant for your work.