Global Ocean dimethylsulfide photolysis rates quantified with a spectrally and vertically resolved model

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Photochemical reactions initiated by ultraviolet radiation remove the climate-active gas dimethylsulfide (DMS) from the ocean's surface layer. Here, we quantified DMS photolysis using a satellite-based model that accounts for spectral irradiance attenuation in the water column, its absorption by chromophoric dissolved organic matter, and the apparent quantum yields (AQYs) with which absorbed photons degrade DMS. Models with two alternative parameterizations for AQY estimate global DMS photolysis at between 17 and 20 Tg S yr−1, equivalent to 13–15 Tg C yr−1, of which ~ 73% occurs in the Southern hemisphere. This asymmetry results mostly from the high AQYs found south of 40° S, which more than counteract the prevailing low irradiance and deep mixing in that region. Simplified schemes currently used in biogeochemical models, whereby photolysis follows the vertical attenuation of visible radiation, overestimate DMS photolysis by around 150% globally. We propose relevant corrections and simple adjustments to those models.

Cite

CITATION STYLE

APA

Galí, M., Devred, E., Pérez, G. L., Kieber, D. J., & Simó, R. (2023, October 1). Global Ocean dimethylsulfide photolysis rates quantified with a spectrally and vertically resolved model. Limnology And Oceanography Letters. John Wiley and Sons Inc. https://doi.org/10.1002/lol2.10342

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free