Dynamical response of a rocking rigid block

8Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper investigates the complex dynamical behavior of a rigid block structure under harmonic ground excitation, thereby mimicking, for instance, the oscillation of the system under seismic excitation or containers placed on a ship under periodic acting of sea waves. The equations of motion are derived, assuming a large frictional coefficient at the interface between the block and the ground, in such a way that sliding cannot occur. In addition, the mathematical model assumes a loss of kinetic energy when an impact with the ground takes place. The resulting mathematical model is then formulated and studied in the framework of impulsive dynamical systems. Its complex dynamical response is studied in detail using two different approaches, based on direct numerical integration and path-following techniques, where the latter is implemented via the continuation platform COCO (Dankowicz and Schilder). Our study reveals the presence of various dynamical phenomena, such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric and asymmetric periodic responses, and chaotic motions. By using the basin stability method, we also investigate the properties of solutions and their ranges of existence in phase and parameter spaces. Moreover, the study considers ground excitation conditions leading to the overturning of the block structure and shows parameter regions wherein such behavior can be avoided.

Cite

CITATION STYLE

APA

Liu, Y., Páez Chávez, J., Brzeski, P., & Perlikowski, P. (2021). Dynamical response of a rocking rigid block. Chaos, 31(7). https://doi.org/10.1063/5.0040962

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free