Fungi are known to be more resistant to toxic compounds and more effective in removing recalcitrant organics such as phenols than bacteria. Here we examined the removal of phenols (as a component of Zopliclone drugs), added to non-sterile pharmaceutical wastewater with continuous treatment fungal bioreactor by its augmentation with mono-species of white-rot fungi (WRF) Trametes versicolor. Results showed that WRF in a sterile reactor (a batch mode) were moderately effective for removal of phenols (40% in seven days); however, native wastewater microbes at optimal conditions for fungi (pH 5.5, 25 °C) were more effective (90%, both in batch and continuous flow modes). In continuous flow mode, addition of WRF was an effective way to mitigate high loads of phenols (up to 400 mg/L), by both fungal enzymes (growth rate 0.075 h-1, laccase enzymatic activity 4 nkat/mL) and biosorption. The study confirmed that naturaly occuring fungi in combination with fungus-augmentation is an effective approach for treatment of high-strength pharmaceutical wastewater.
CITATION STYLE
Bernats, M., & Juhna, T. (2018). Removal of phenols-like substances in pharmaceutical wastewater with fungal bioreactors by adding Trametes versicolor. Water Science and Technology, 78(4), 743–750. https://doi.org/10.2166/wst.2018.340
Mendeley helps you to discover research relevant for your work.