Optical Performance Assessment of Nanostructured Alumina Multilayer Antireflective Coatings Used in III−V Multijunction Solar Cells

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The optical performance of a multilayer antireflective coating incorporating lithography-free nanostructured alumina is assessed. To this end, the performance of single-junction GaInP solar cells and four-junction GaInP/GaAs/ GaInNAsSb/GaInNAsSb multijunction solar cells incorporating the nanostructured alumina is compared against the performance of similar solar cells using conventional double-layer antireflective coating. External quantum efficiency measurements for GaInP solar cells with the nanostructured coating demonstrate angle-independent operation, showing only a marginal difference at 60° incident angle. The average reflectance of the nanostructured antireflective coating is ∼3 percentage points smaller than the reflectance of the double-layer antireflective coating within the operation bandwidth of the GaInP solar cell (280−710 nm), which is equivalent of ∼0.2 mA/cm2 higher current density at AM1.5D (1000 W/m2). When used in conjunction with the four-junction solar cell, the nanostructured coating provides ∼0.8 percentage points lower average reflectance over the operation bandwidth from 280 to 1380 nm. However, it is noted that only the reflectance of the bottom GaInNAsSb junction is improved in comparison to the planar coating. In this respect, since in such solar cells the bottom junction typically is limiting the operation, the nanostructured coating would enable increasing the current density ∼0.6 mA/cm2 in comparison to the standard two-layer coating. The light-biased current−voltage measurements show that the fabrication process for the nanostructured coating does not induce notable recombination or loss mechanisms compared to the established deposition methods. Angle-dependent external quantum efficiency measurements incline that the nanostructured coating excels in oblique angles, and due to low reflectance at a 1000−1800 nm wavelength range, it is very promising for next-generation broadband multijunction solar cells with four or more junctions.

Cite

CITATION STYLE

APA

Reuna, J., Hietalahti, A., Aho, A., Isoaho, R., Aho, T., Vuorinen, M., … Guina, M. (2022). Optical Performance Assessment of Nanostructured Alumina Multilayer Antireflective Coatings Used in III−V Multijunction Solar Cells. ACS Applied Energy Materials, 5(5), 5804–5810. https://doi.org/10.1021/acsaem.2c00133

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free