A ResNet50-DPA model for tomato leaf disease identification

12Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Tomato leaf disease identification is difficult owing to the variety of diseases and complex causes, for which the method based on the convolutional neural network is effective. While it is challenging to capture key features or tends to lose a large number of features when extracting image features by applying this method, resulting in low accuracy of disease identification. Therefore, the ResNet50-DPA model is proposed to identify tomato leaf diseases in the paper. Firstly, an improved ResNet50 is included in the model, which replaces the first layer of convolution in the basic ResNet50 model with the cascaded atrous convolution, facilitating to obtaining of leaf features with different scales. Secondly, in the model, a dual-path attention (DPA) mechanism is proposed to search for key features, where the stochastic pooling is employed to eliminate the influence of non-maximum values, and two convolutions with one dimension are introduced to replace the MLP layer for effectively reducing the damage to leaf information. In addition, to quickly and accurately identify the type of leaf disease, the DPA module is incorporated into the residual module of the improved ResNet50 to obtain an enhanced tomato leaf feature map, which helps to reduce economic losses. Finally, the visualization results of Grad-CAM are presented to show that the ResNet50-DPA model proposed can identify diseases more accurately and improve the interpretability of the model, meeting the need for precise identification of tomato leaf diseases.

References Powered by Scopus

Deep residual learning for image recognition

176503Citations
N/AReaders
Get full text

Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

15499Citations
N/AReaders
Get full text

Plant disease detection and classification by deep learning

559Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Multifactorial Tomato Leaf Disease Detection Based on Improved YOLOV5

1Citations
N/AReaders
Get full text

Evaluation Model of Rice Seedling Production Line Seeding Quality Based on Deep Learning

1Citations
N/AReaders
Get full text

Identification of tomato leaf diseases based on DGP-SNNet

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Liang, J., & Jiang, W. (2023). A ResNet50-DPA model for tomato leaf disease identification. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1258658

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

67%

Lecturer / Post doc 3

33%

Readers' Discipline

Tooltip

Computer Science 7

78%

Chemical Engineering 1

11%

Materials Science 1

11%

Save time finding and organizing research with Mendeley

Sign up for free