FMRP deficiency leads to multifactorial dysregulation of splicing and mislocalization of MBNL1 to the cytoplasm

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is often modeled in Fmr1 knockout mice where the RNA-binding protein FMRP is absent. Here, we show that in Fmr1-deficient mice, RNA mis-splicing occurs in several brain regions and peripheral tissues. To assess molecular mechanisms of splicing mis-regulation, we employed N2A cells depleted of Fmr1. In the absence of FMRP, RNA-specific exon skipping events are linked to the splicing factors hnRNPF, PTBP1, and MBNL1. FMRP regulates the translation of Mbnl1 mRNA as well as Mbnl1 RNA auto-splicing. Elevated Mbnl1 auto-splicing in FMRP-deficient cells results in the loss of a nuclear localization signal (NLS)-containing exon. This in turn alters the nucleus-to-cytoplasm ratio of MBNL1. This redistribution of MBNL1 isoforms in Fmr1-deficient cells could result in downstream splicing changes in other RNAs. Indeed, further investigation revealed that splicing disruptions resulting from Fmr1 depletion could be rescued by overexpression of nuclear MBNL1. Altered Mbnl1 auto-splicing also occurs in human FXS postmortem brain. These data suggest that FMRP-controlled translation and RNA processing may cascade into a general dys-regulation of splicing in Fmr1-deficient cells.

Cite

CITATION STYLE

APA

Jung, S., Shah, S., Han, G., & Richter, J. D. (2023). FMRP deficiency leads to multifactorial dysregulation of splicing and mislocalization of MBNL1 to the cytoplasm. PLoS Biology, 21(12). https://doi.org/10.1371/journal.pbio.3002417

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free