The reproducibility of precipitation in the early stages of forecasts, often called a spindown or spinup problem, has been a significant issue in numerical weather prediction. This problem is caused by moisture imbalance in the analysis data, and in the case of the Japan Meteorological Agency’s (JMA’s) mesoscale data assimilation system, JNoVA, we found that the imbalance stems from the existence of unrealistic supersaturated states in the minimal solution of the cost function in JNoVA. Based on the theory of constrained optimization problems, we implemented an exterior penalty function method for the mixing ratio within JNoVA to suppress unrealistic supersaturated states. The advantage of this method is the simplicity of its theory and implementation. The results of twin data assimilation cycle experiments conducted for the heavy rain event of July 2018 over Japan show that—with the new method—unrealistic supersaturated states are reduced successfully, negative temperature bias to the observations is alleviated, and a sharper distribution of the mixing ratio is obtained. These changes help to initiate the development of convection at the proper location and improve the fractions skill score (FSS) of precipitation in the early stages of the forecast. From these results, we conclude that the initial shock caused by moisture imbalance is mitigated by implementing the penalty function method, and the new moisture balance has a positive impact on the reproducibility of precipitation in the early stages of forecasts.
CITATION STYLE
Sawada, K., & Honda, Y. (2021). A Constraint Method for Supersaturation in a Variational Data Assimilation System. Monthly Weather Review, 149(11), 3707–3724. https://doi.org/10.1175/MWR-D-20-0357.1
Mendeley helps you to discover research relevant for your work.