Orthogonal and smooth subspace based on sparse coding for image classification

0Citations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Many real-world problems usually deal with high-dimensional data, such as images, videos, text, web documents and so on. In fact, the classification algorithms used to process these high-dimensional data often suffer from the low accuracy and high computational complexity. Therefore, we propose a framework of transforming images from a high-dimensional image space to a low-dimensional target image space, based on learning an orthogonal smooth subspace for the SIFT sparse codes (SC-OSS). It is a two stage framework for subspace learning. Firstly, a sparse coding followed by spatial pyramid max pooling is used to get the image representation. Then, the image descriptor is mapped into an orthonormal and smooth subspace to classify images in low dimension. The proposed algorithm adds the orthogonality and a Laplacian smoothing penalty to constrain the projective function coefficient to be orthogonal and spatially smooth. The experimental results on the public datasets have shown that the proposed algorithm outperforms other subspace methods.

References Powered by Scopus

Distinctive image features from scale-invariant keypoints

50243Citations
N/AReaders
Get full text

Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories

7282Citations
N/AReaders
Get full text

Locality-constrained linear coding for image classification

3058Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Dai, F., Zhao, Y., Chang, D., & Lin, C. (2015). Orthogonal and smooth subspace based on sparse coding for image classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9315, pp. 41–50). Springer Verlag. https://doi.org/10.1007/978-3-319-24078-7_5

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 1

100%

Readers' Discipline

Tooltip

Engineering 1

100%

Save time finding and organizing research with Mendeley

Sign up for free