Numerical investigation on Co-firing characteristics of semi-coke and lean coal in a 600MW supercritical wall-fired boiler

21Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Semi-coke is one of the principal by-products of coal pyrolysis and gasification, which features the disadvantages of ignition difficulty, low burnout rate, and high nitrogen oxides (NO x ) emission during combustion process. Co-firing semi-coke with coal is a potential approach to achieve clean and efficient utilization of such low-volatile fuel. In this paper, the co-firing performance of semi-coke and lean coal in a 600 MW supercritical wall-fired boiler was numerically investigated which has been seldom done previously. The influences of semi-coke blending ratio, injection position of semi-coke, excess air ratio in the main combustion zone, the co-firing method, and over fire air (OFA) arrangement on the combustion efficiency and NO x generation characteristics of the utility boiler were extensively analyzed. The simulation results indicated that as the blending ratio of semi-coke increased, the NO x emission at furnace outlet decreased. The blending methods (in-furnace versus out-furnace) had certain impacts on the NO x emission and carbon content in fly ash, while the in-furnace blending method showed more flexibility in co-firing adjustment. The injection of semi-coke from the upper burners could significantly abate NO x emission at the furnace outlet, but also brought about the rise of carbon content in fly ash and the increase of outlet temperature. Compared with the condition that semi-coke and lean coal were injected from different burners, the burnout ratio of the blend premixed outside the furnace was higher at the same blending ratio of semi-coke. With the excess air ratio in the main combustion zone increased, NO x concentration at the furnace outlet was increased. The excess air ratio of 0.75 in the main combustion zone was recommended for co-firing 45% semi-coke with lean coal. The operational performance of the boiler co-firing semi-coke was greatly affected by the arrangement of OFA as well. The amount of NO x generated from the supercritical wall-fired boiler could be reduced with an increase of the OFA height.

Cite

CITATION STYLE

APA

Wang, C., Feng, Q., Lv, Q., Zhao, L., Du, Y., Wang, P., … Che, D. (2019). Numerical investigation on Co-firing characteristics of semi-coke and lean coal in a 600MW supercritical wall-fired boiler. Applied Sciences (Switzerland), 9(5). https://doi.org/10.3390/app9050889

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free