Rugulopteryx okamurae (RO) is an invasive brown seaweed that causes severe environmental problems in the Mediterranean Sea. This work proposed an extraction method that enables their use as a raw material for producing sodium alginate. Alginate was successfully extracted from this invasive seaweed, with its gelling performance in the presence of Ca2+ ions comparable to existing commercial alginates. The mannuronic acid (M)-to-guluronic (G) acid ratio in the 1H-NMR profile indicated a higher percentage of G in the RO-extracted alginate, which implies a greater formation of so-called egg box structures. These differences resulted in their different rheological behaviour, as sodium alginate aqueous solutions exhibited a greater viscosity ((Formula presented.) at 1 s−1 = 3.8 ± 0.052 Pa·s) than commercial alginate (2.8 ± 0.024 Pa·s), which is related to the egg box structure developed. When gelled in the presence of calcium, an increase in the value of the elastic modulus was observed. However, the value of the tan δ for the extracted alginate was lower than that of commercial alginate gels, confirming a structure more densely packed, which implies a different restructuring of the alginate chain when gelling. These results confirm the suitability of using invasive Rugulopteryx okamurae as a source of calcium alginate gels. In this way, sustainable bio-based materials may be produced from undesired biomass that currently poses a threat to the ecosystem.
CITATION STYLE
Santana, I., Felix, M., & Bengoechea, C. (2024). Feasibility of Invasive Brown Seaweed Rugulopteryx okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels. Polymers, 16(5). https://doi.org/10.3390/polym16050702
Mendeley helps you to discover research relevant for your work.