Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia

74Citations
Citations of this article
78Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Microglia cells have been reported to mediate hypoxia-induced inflammation through the production of proinflammatory cytokines, including interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and IL-6. Given the fact that the activation of the type 2 cannabinoid receptor (CB2R) provides antioxidative and anti-inflammatory results, it is suspected that its selective agonist, trans-caryophyllene (TC), may have protective effects against hypoxia-induced neuroinflammatory responses. In this study, TC was found to significantly inhibit hypoxia-induced cytotoxicity as well as the release of proinflammatory cytokines, including IL-1β, TNF-α, and IL-6, through activation of BV2 microglia following hypoxic exposure (1 % O2, 24 h). Furthermore, TC significantly inhibited hypoxia-induced generation of reactive oxygen species (ROS) in mitochondria as well as the activation of nuclear factor kappa B (NF-κB) in microglia. Importantly, TC's effects on inhibiting the activation of NF-κB and the secretion of inflammatory cytokines can be abolished by muting the CB2R using small RNA interference. These observations indicate that TC suppresses the hypoxia-induced neuroinflammatory response through inhibition of NF-κB activation in microglia. Therefore, TC may be beneficial in preventing hypoxia-induced neuroinflammation. © 2014 Springer Science+Business Media.

Cite

CITATION STYLE

APA

Guo, K., Mou, X., Huang, J., Xiong, N., & Li, H. (2014). Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia. Journal of Molecular Neuroscience, 54(1), 41–48. https://doi.org/10.1007/s12031-014-0243-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free