Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a montgomery-form elliptic curve

60Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present a scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery form elliptic curve over any nonbinary field. The previous algorithms for scalar multiplication on a Montgomery form do not consider how to recover the y-coordinate. So although they can be applicable to certain restricted schemes (e.g. ECDH and ECDSA-S), some schemes (e.g. ECDSA-V and MQV) require scalar multiplication with recovery of the y-coordinate. We compare our proposed scalar multiplication algorithm with the traditional scalar multiplication algorithms (including Window-methods in Weierstrass form), and discuss the Montgomery form versus the Weierstrass form in the performance of implementations with several techniques of elliptic curve cryptosystems (including ECES, ECDSA, and ECMQV). Our results clarify the advantage of the cryptographic usage of Montgomery-form elliptic curves in constrained environments such as mobile devices and smart cards.

Cite

CITATION STYLE

APA

Okeya, K., & Sakurai, K. (2001). Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a montgomery-form elliptic curve. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2162, pp. 126–141). Springer Verlag. https://doi.org/10.1007/3-540-44709-1_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free