Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen-and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγreceptors. The resulting cytoplasmic IgGs-named 'cyclonals'-effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation.
CITATION STYLE
Robinson, M. P., Ke, N., Lobstein, J., Peterson, C., Szkodny, A., Mansell, T. J., … Berkmen, M. (2015). Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nature Communications, 6. https://doi.org/10.1038/ncomms9072
Mendeley helps you to discover research relevant for your work.