Global Navigation Satellite Systems (GNSS) are crucial elements used in forest inventories. Forest metrics modeling efficacy depends on the accuracy of determining sample plot locations by GNSS. As of 2021, the GNSS consists of 120 active satellites, ostensibly improving position acquisition in forest conditions. The main idea of this article was to evaluate GIS-class and geodetic class GNSS receivers on 33 control points located in the forest. The main assumptions were operating on four GNSS systems (GPS, GLONASS, Galileo, and BeiDou), keeping a continuous online connection to the network of reference stations, maintaining occupation time-limited to 60 epochs, and repeating all the measurements three times. Rapid static positioning was tested, as it compares the true performance of the four GNSS systems receivers. Statistical differences between the receivers were confirmed. The GIS-class receiver achieved an accuracy of 1.38 m and a precision of 1.29 m, while the geodetic class receiver reached 0.74 m and 0.91 m respectively. Even though the research was conducted under the same data capture conditions, the large variability of positioning results were found to be caused by cycle slips and the multipath effect.
CITATION STYLE
Brach, M. (2022). Rapid Static Positioning Using a Four System GNSS Receivers in the Forest Environment. Forests, 13(1). https://doi.org/10.3390/f13010045
Mendeley helps you to discover research relevant for your work.