Predicting the binding mode of flexible polypeptides to proteins is an important task that falls outside the domain of applicability of most small molecule and protein−protein docking tools. Here, we test the small molecule flexible ligand docking program Glide on a set of 19 non-α-helical peptides and systematically improve pose prediction accuracy by enhancing Glide sampling for flexible polypeptides. In addition, scoring of the poses was improved by post-processing with physics-based implicit solvent MM- GBSA calculations. Using the best RMSD among the top 10 scoring poses as a metric, the success rate (RMSD ≤ 2.0 Å for the interface backbone atoms) increased from 21% with default Glide SP settings to 58% with the enhanced peptide sampling and scoring protocol in the case of redocking to the native protein structure. This approaches the accuracy of the recently developed Rosetta FlexPepDock method (63% success for these 19 peptides) while being over 100 times faster. Cross-docking was performed for a subset of cases where an unbound receptor structure was available, and in that case, 40% of peptides were docked successfully. We analyze the results and find that the optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.
CITATION STYLE
Preston, M. J., Stylianou, D. J., Zeng, M. Q., Glover, M. S., Scheck, D. A. C., Woolf, M. E. C., … Syed, D. N. (2017). OP16. THE KETOGENIC DIET INDUCES EPIGENETIC CHANGES THAT PLAY KEY ROLES IN TUMOUR DEVELOPMENT. Neuro-Oncology, 19(suppl_1), i28–i28. https://doi.org/10.1093/neuonc/now292.015
Mendeley helps you to discover research relevant for your work.