Although hypertension remains the most potent and widespread cardiovascular risk factor, its pharmacological treatment has achieved only limited success. The chromogranin A-derived fragment catestatin inhibits catecholamine release by acting as an endogenous nicotinic cholinergic antagonist and can rescue hypertension in the setting of chromogranin A-targeted ablation. Here, we undertook novel peptide chemistry to synthesize isomers of catestatin: normal/wild-type as well as a retro-inverso (R-I) version, with not only inversion of chirality (L→D amino acids) but also reversal of sequence (carboxyl→amino). The R-I peptide was entirely resistant to proteolytic digestion and displayed enhanced potency as well as preserved specificity of action toward nicotinic cholinergic events: catecholamine secretion, agonist desensitization, secretory protein transcription, and cationic signal transduction. Structural modeling suggested similar side-chain orientations of the wild-type and R-I isomers, whereas circular dichroism spectroscopy documented inversion of chirality. In vivo, the R-I peptide rescued hypertension in 2 mouse models of the human trait: monogenic chromogranin A-targeted ablation, with prolonged efficacy of the R-I version and a polygenic model, with magnified efficacy of the R-I version. These results may have general implications for generation of metabolically stable mimics of biologically active peptides for cardiovascular pathways. The findings also point the way toward a potential new class of drug therapeutics for an important risk trait and, more generally, open the door to broader applications of the R-I strategy in other pathways involved in cardiovascular biology, with the potential for synthesis of diagnostic and therapeutic probes for both physiology and disease. © 2012 American Heart Association, Inc.
CITATION STYLE
Biswas, N., Gayen, J., Mahata, M., Su, Y., Mahata, S. K., & O’Connor, D. T. (2012). Novel peptide isomer strategy for stable inhibition of catecholamine release: Application to hypertension. Hypertension, 60(6), 1552–1559. https://doi.org/10.1161/HYPERTENSIONAHA.112.202127
Mendeley helps you to discover research relevant for your work.