Purpose: To develop a high temporal resolution phase-contrast pulse sequence for evaluation of diastolic filling patterns, and to evaluate it in comparison to transthoracic echocardiography. Methods: A phase-contrast velocity-encoded gradient-echo pulse sequence was implemented with a sector-wise golden-angle radial ordering. Acquisitions were optimized for myocardial tissue (TE/TR: 4.4/6.8 ms, flip angle: 8º, velocity encoding: 30 cm/s) and transmitral flow (TE/TR: 4.0/6.6 ms, flip angle: 20º, velocity encoding: 150 cm/s). Shared velocity encoding was combined with a sliding-window reconstruction that enabled up to 250 frames per cardiac cycle. Transmitral and myocardial velocities were measured in 35 patients. Echocardiographic velocities were obtained with pulsed-wave Doppler using standard methods. Results: Myocardial velocity showed a low difference and good correlation between MRI and Doppler (mean ± 95% limits of agreement 0.9 ± 3.7 cm/s, R2 = 0.63). Transmitral velocity was underestimated by MRI (P
CITATION STYLE
Fyrdahl, A., Ramos, J. G., Eriksson, M. J., Caidahl, K., Ugander, M., & Sigfridsson, A. (2020). Sector-wise golden-angle phase contrast with high temporal resolution for evaluation of left ventricular diastolic dysfunction. Magnetic Resonance in Medicine, 83(4), 1310–1321. https://doi.org/10.1002/mrm.28018
Mendeley helps you to discover research relevant for your work.