STAT is an essential activator of the zygotic genome in the early drosophila embryo

42Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

In many organisms, transcription of the zygotic genome begins during the maternal-to-zygotic transition (MZT), which is characterized by a dramatic increase in global transcriptional activities and coincides with embryonic stem cell differentiation. In Drosophila, it has been shown that maternal morphogen gradients and ubiquitously distributed general transcription factors may cooperate to upregulate zygotic genes that are essential for pattern formation in the early embryo. Here, we show that Drosophila STAT (STAT92E) functions as a general transcription factor that, together with the transcription factor Zelda, induces transcription of a large number of early-transcribed zygotic genes during the MZT. STAT92E is present in the early embryo as a maternal product and is active around the MZT. DNA-binding motifs for STAT and Zelda are highly enriched in promoters of early zygotic genes but not in housekeeping genes. Loss of Stat92E in the early embryo, similarly to loss of zelda, preferentially down-regulates early zygotic genes important for pattern formation. We further show that STAT92E and Zelda synergistically regulate transcription. We conclude that STAT92E, in conjunction with Zelda, plays an important role in transcription of the zygotic genome at the onset of embryonic development. © 2011 Tsurumi et al.

Cite

CITATION STYLE

APA

Tsurumi, A., Xia, F., Li, J., Larson, K., LaFrance, R., & Li, W. X. (2011). STAT is an essential activator of the zygotic genome in the early drosophila embryo. PLoS Genetics, 7(5). https://doi.org/10.1371/journal.pgen.1002086

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free