Semi-structured text generation is a non-trivial problem. Although last years have brought lots of improvements in natural language generation, thanks to the development of neural models trained on large scale datasets, these approaches still struggle with producing structured, context- and commonsense-aware texts. Moreover, it is not clear how to evaluate the quality of generated texts. To address these problems, we introduce RecipeNLG - a novel dataset of cooking recipes. We discuss the data collection process and the relation between the semi-structured texts and cooking recipes. We use the dataset to approach the problem of generating recipes. Finally, we make use of multiple metrics to evaluate the generated recipes.
CITATION STYLE
Bień, M., Gilski, M., Maciejewska, M., Taisner, W., Wisńiewski, D., & Ławrynowicz, A. (2020). RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation. In INLG 2020 - 13th International Conference on Natural Language Generation, Proceedings (pp. 22–28). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2020.inlg-1.4
Mendeley helps you to discover research relevant for your work.