To investigate micropores and mesopores in the cell walls of dry wood, CO2 gas and N2 gas adsorption onto dry wood were measured at ice-water temperature (273 K) and liquid nitrogen temperature (77 K). CO2 gas adsorption isotherms obtained were used for determining micropore volumes smaller than 0.6 nm by the HK method (Horvath-Kawazoe method), and N2 gas adsorption isotherms obtained were used for determining the mesopore volume between 2 nm and 50 nm by the Barrett-Joyner-Halenda (BJH) method. Micropores and mesopores existed in cell walls of dry wood, and the cumulative pore volume was much larger for micropores than for mesopores. Micropores in the cell wall of dry wood decreased with elevating heat treatment temperature, and the decreased micropore was reproducible by wetting and drying. Mesopores did not decrease so much with elevating heat treatment temperature. Micropore volumes for the softwood Hinoki and the hardwood Buna were compared. A larger amount of micropores existed in hardwood Buna than in softwood Hinoki, and this relationship was considered to correspond to the difference in thermal softening properties for lignin in water-swollen Hinoki and Buna. This result probably indicates that micropores in the cell walls of dry wood relate to the structure of lignin. © 2009 The Japan Wood Research Society.
CITATION STYLE
Kojiro, K., Miki, T., Sugimoto, H., Nakajima, M., & Kanayama, K. (2010). Micropores and mesopores in the cell wall of dry wood. Journal of Wood Science, 56(2), 107–111. https://doi.org/10.1007/s10086-009-1063-z
Mendeley helps you to discover research relevant for your work.