Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process

156Citations
Citations of this article
193Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this report, synthesis of the starch nanoparticles from underutilized and cheap sources viz: Horse chestnut (HS), Water chestnut (WS) and Lotus stem (LS) by using mild alkali hydrolysis and ultra-sonication process has been presented. The particles were characterized by Differential scanning colorimeter (DSC), X-Ray Diffraction (XRD), Rheology, Scanning electron microscopy (SEM) and Fourier transform infra-spectroscopy (ATR-FTIR). The particle size measurements, functional properties and antioxidant potential of starch nanoparticles were also analyzed. The experimental results revealed that the average particle size diameter of Horse chestnut starch nanoparticles (HSP), Water chestnut starch nanoparticles (WSP) and Lotus stem starch nanoparticles (LSP) was found to be 420, 606 and 535 nm, respectively. We observed a notable increase in the water absorption capacity but decreased capacity for oil absorption in the starch nano-particles. SEM images revealed damaged starch granules after size reduction. Additionally, loss of crystallinity and molecular order was observed from XRD and ATR-FTIR spectra. It was concluded that the starch nanoparticles have better thermal stability, increased viscosity and antioxidant properties.

Cite

CITATION STYLE

APA

Ahmad, M., Gani, A., Hassan, I., Huang, Q., & Shabbir, H. (2020). Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60380-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free