Biochemical and functional characterization of the NurA-HerA complex from Deinococcus radiodurans

25Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In archaea, the NurA nuclease and HerA ATPase/helicase, together with the Mre11-Rad50 complex, function in 3' singlestranded DNA (ssDNA) end processing during homologous recombination (HR). However, bacterial homologs of NurA and HerA have not been characterized. From Deinococcus radiodurans, we identified the manganese-dependent 5'-to-3' ssDNA/double- stranded DNA (dsDNA) exonuclease/endonuclease NurA (DrNurA) and the ATPase HerA (DrHerA). These two proteins stimulated each other's activity through direct protein-protein interactions. The N-terminal HAS domain of DrHerA was the key domain for this interaction. Several critical residues of DrNurA and DrHerA were verified by site-directed mutational analysis. Temperature-dependent activity assays confirmed that the two proteins had mesophilic features, with optimum activity temperatures 10°C to 15°C higher than their optimum growth temperatures. Knocking out either nurA or herA affected cell proliferation by shortening the growth phase, especially for growth at a high temperature (37°C). In addition, both mutant strains displayed almost 10-fold-reduced intermolecular recombination efficiency, indicating that DrNurA and DrHerA might be involved in homologous recombination in vivo. However, single- and double-gene deletions did not show significantly decreased radioresistance. Our results confirmed that the biochemical activities of bacterial NurA and HerA proteins were conserved with archaea. Our phenotypical results suggested that these proteins might have different functions in bacteria.

Cite

CITATION STYLE

APA

Cheng, K., Chen, X., Xu, G., Wang, L., Xu, H., Yang, S., … Hua, Y. (2015). Biochemical and functional characterization of the NurA-HerA complex from Deinococcus radiodurans. Journal of Bacteriology, 197(12), 2048–2061. https://doi.org/10.1128/JB.00018-15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free