DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae

10Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Corneal guttae, which are the abnormal growth of extracellular matrix in the corneal endothelium, are observed in specular images as black droplets that occlude the endothelial cells. To estimate the corneal parameters (endothelial cell density [ECD], coefficient of variation [CV], and hexagonality [HEX]), we propose a new deep learning method that includes a novel attention mechanism (named fNLA), which helps to infer the cell edges in the occluded areas. The approach first derives the cell edges, then infers the well-detected cells, and finally employs a postprocessing method to fix mistakes. This results in a binary segmentation from which the corneal parameters are estimated. We analyzed 1203 images (500 contained guttae) obtained with a Topcon SP-1P microscope. To generate the ground truth, we performed manual segmentation in all images. Several networks were evaluated (UNet, ResUNeXt, DenseUNets, UNet++, etc.) and we found that DenseUNets with fNLA provided the lowest error: a mean absolute error of 23.16 [cells/mm2] in ECD, 1.28 [%] in CV, and 3.13 [%] in HEX. Compared with Topcon’s built-in software, our error was 3–6 times smaller. Overall, our approach handled notably well the cells affected by guttae, detecting cell edges partially occluded by small guttae and discarding large areas covered by extensive guttae.

Cite

CITATION STYLE

APA

Vigueras-Guillén, J. P., van Rooij, J., van Dooren, B. T. H., Lemij, H. G., Islamaj, E., van Vliet, L. J., & Vermeer, K. A. (2022). DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-18180-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free