Selection and training practices for jumping horses have not yet been validated using objective performance analyses. This study aimed to quantify the differences and relationships between movement and muscle activation strategies in horses with varying jump technique to identify objective jumping performance indicators. Surface electromyography (sEMG) and three-dimensional kinematic data were collected from horses executing a submaximal jump. Kinematic variables were calculated based on equestrian-derived performance indicators relating to impulsion, engagement and joint articulation. Horses were grouped using an objective performance indicator—center of mass (CM) elevation during jump suspension (ZCM). Between-group differences in kinematic variables and muscle activation timings, calculated from sEMG data, were analyzed using one-way ANOVA. Statistical parametric mapping (SPM) evaluated between-group differences in time and amplitude-normalized sEMG waveforms. Relationships between movement and muscle activation were evaluated using Pearson correlation coefficients. Horses with the greatest ZCM displayed significantly (p < 0.05) shorter gluteal contractions at take-off, which were significantly correlated (p < 0.05) with a faster approach and more rapid hindlimb shortening and CM vertical displacement and velocity, as well as shorter hindlimb stance duration at take-off. Findings provide objective support for prioritizing equestrian-derived performance indicators related to the generation of engagement, impulsion and hindlimb muscle power when selecting or training jumping horses.
CITATION STYLE
St. George, L., Clayton, H. M., Sinclair, J., Richards, J., Roy, S. H., & Hobbs, S. J. (2021). Muscle function and kinematics during submaximal equine jumping: What can objective outcomes tell us about athletic performance indicators? Animals, 11(2), 1–26. https://doi.org/10.3390/ani11020414
Mendeley helps you to discover research relevant for your work.