Characterization of prompt gamma rays for in-vivo range verification in hadron therapy: A Geant4 simulation study

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Prompt gamma (PG) rays have been proposed for in-vivo beam range verification during treatment delivery. As a secondary by-product emitted almost instantaneously upon ion-nuclear interaction, PG rays offer real-time tracking of the Bragg peak (BP). However their detection is challenging since they have a broad energy spectrum with interference from neutrons and stray gamma rays. Numerous approaches have been proposed to utilise PG for in-vivo beam range verification. In this work, Geant4 Monte Carlo (MC) simulations have been used to study the spectral, spatial, temporal and angular distribution characteristics of PG emission and detection from hadron radiation fields of varying energy. Proton, 12C and 4He beams irradiated homogeneous water phantoms. These studies will provide valuable information for the development of clinically suitable and reliable PG detector systems.

Cite

CITATION STYLE

APA

Zarifi, M., Guatelli, S., Qi, Y., Bolst, D., Prokopovich, D., & Rosenfeld, A. (2019). Characterization of prompt gamma rays for in-vivo range verification in hadron therapy: A Geant4 simulation study. In Journal of Physics: Conference Series (Vol. 1154). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1154/1/012030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free