Caveolin-1 and -2 in airway epithelium: Expression and in situ association as detected by FRET-CLSM

23Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Caveolae are involved in diverse cellular functions such as signal transduction, cholesterol homeostasis, endo- and transcytosis, and also may serve as entry sites for microorganisms. Hence, their occurrence in epithelium of the airways might be expected but, nonetheless, has not yet been examined. Methods: Western blotting, real-time quantitative PCR analysis of abraded tracheal epithelium and laser-assisted microdissection combined with subsequent mRNA analysis were used to examine the expression of cav-1 and cav-2, two major caveolar coat proteins, in rat tracheal epithelium. Fluorescence immunohistochemistry was performed to locate caveolae and cav-1 and -2 in the airway epithelium of rats, mice and humans. Electron-microscopic analysis was used for the identification of caveolae. CLSM-FRET analysis determined the interaction of cav-1α and cav-2 in situ. Results: Western blotting and laser-assisted microdissection identified protein and transcripts, respectively, of cav-1 and cav-2 in airway epithelium. Real-time quantitative RT-PCR analysis of abraded tracheal epithelium revealed a higher expression of cav-2 than of cav-1. Immunoreactivities for cav-1 and for cav-2 were co-localized in the cell membrane of the basal cells and basolaterally in the ciliated epithelial cells of large airways of rat and human. However, no labeling for cav-1 or cav-2 was observed in the epithelial cells of small bronchi. Using conventional double-labeling indirect immunofluorescence combined with CLSM-FRET analysis, we detected an association of cav-1α and -2 in epithelial cells. The presence of caveolae was confirmed by electron microscopy. In contrast to human and rat, cav-1-immunoreactivity and caveolae were confined to basal cells in mice. Epithelial caveolae were absent in cav-1-deficient mice, implicating a requirement of this caveolar protein in epithelial caveolae formation. Conclusion: These results show that caveolae and caveolins are integral membrane components in basal and ciliated epithelial cells, indicating a crucial role in these cell types. In addition to their physiological role, they may be involved in airway infection. © 2006 Krasteva et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Krasteva, G., Pfeil, U., Drab, M., Kummer, W., & König, P. (2006). Caveolin-1 and -2 in airway epithelium: Expression and in situ association as detected by FRET-CLSM. Respiratory Research, 7. https://doi.org/10.1186/1465-9921-7-108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free