Visible and near-infrared reflectance (Vis-NIR) spectroscopy can provide low-cost and high-density data for mapping various soil properties. However, a weak correlation between the spectra and measurements of soil heavy metals makes spectroscopy difficult to use in predicting incipient risk areas. In this study, we introduce a new spectral index (SI) based on Vis-NIR spectra and use it as a covariate in ordinary cokriging (OCK) to improve the mapping of soil heavy metals. The SI was defined from the highest covariance between spectra and heavy metal content in the partial least squares regression (PLSR) model. The proposed mapping approach was compared with an ordinary kriging (OK) predictor that uses only soil heavy metal data and an OCK predictor that uses soil organic matter (SOM) and Fe as covariates. To this end, a total of 100 topsoil (0-20 cm) samples were collected in an agricultural area near Longkou City, and the contents of As, Pb and Zn in the soil were determined. The results showed that OCK with the SI provided better results in terms of unbiasedness and accuracy compared to other comparative methods. Additionally, we explored the SI through simple strategies based on spectral analysis and correlation statistics and found that the SI synthesized most of the soil properties affected by heavy metals and was not limited to Fe and SOM. In summary, the SI method is cost-effective for improving soil heavy metal mapping and can be applied to other areas.
CITATION STYLE
Cao, J., Li, C., Wu, Q., & Qiao, J. (2020). Improved Mapping of Soil Heavy Metals Using a Vis-NIR Spectroscopy Index in an Agricultural Area of Eastern China. IEEE Access, 8, 42584–42594. https://doi.org/10.1109/ACCESS.2020.2976902
Mendeley helps you to discover research relevant for your work.