Distant supervision for relation extraction with ranking-based methods

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Relation extraction has benefited from distant supervision in recent years with the development of natural language processing techniques and data explosion. However, distant supervision is still greatly limited by the quality of training data, due to its natural motivation for greatly reducing the heavy cost of data annotation. In this paper, we construct an architecture called MIML-sort (Multi-instance Multi-label Learning with Sorting Strategies), which is built on the famous MIML framework. Based on MIML-sort, we propose three ranking-based methods for sample selection with which we identify relation extractors from a subset of the training data. Experiments are set up on the KBP (Knowledge Base Propagation) corpus, one of the benchmark datasets for distant supervision, which is large and noisy. Compared with previous work, the proposed methods produce considerably better results. Furthermore, the three methods together achieve the best F1 on the official testing set, with an optimal enhancement of F1 from 27.3% to 29.98%.

Cite

CITATION STYLE

APA

Xiang, Y., Chen, Q., Wang, X., & Qin, Y. (2016). Distant supervision for relation extraction with ranking-based methods. Entropy, 18(6). https://doi.org/10.3390/e18060204

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free