Graphitic carbon oxide (GCO) and magnetic graphitic carbon oxide (MGCO) were prepared from sugar via optimized green activation by employing ozone oxidation, and applied to wastewater treatment. The maximal oxidation and adsorption yield of pollutants were achieved at pH 2.0−4.0, which is the optimized pH for ozone oxidation of GC to generate GCO. As-prepared GCO and MGCO were characterized using X-ray, infrared, and microscopic techniques. The MGCO has enough saturation magnetization (MS) of 41.38 emu g−1 for separation of the sorbent from the reaction medium by applying an external magnetic field. Batch adsorption of radioactive and heavy metals (Th(IV), Pb(II)), and a dye (methylene blue (MB)) using GCO and MGCO was evaluated by varying the adsorbent dose, equilibrium pH, contact time, initial metal and dye concentrations, and kinetics and isotherms. Adsorption kinetics and isotherm studies indicated that Th(IV), Pb(II), and MB adsorption were best described by pseudo-second-order kinetics and Langmuir isotherm with R2 (correlation coefficient) > 0.99, respectively. The maximum adsorption capacities for Th(IV), Pb(II), and MB were 52.63, 47.39, and 111.12 mg g−1 on GCO and 76.02, 71.94, and 76.92 mg g−1 on MGCO. GCO and MGCO are prospectively effective and low-cost adsorbents for ion removal in wastewater treatment. As prepared MGCO can be reused up to three cycles for Th(IV), Pb(II), and MB. This work provides fundamental information about the equilibrium adsorption isotherms and mechanisms for Th(IV), Pb(II), and MB on GCO and MGCO.
CITATION STYLE
Lingamdinne, L. P., Choi, J. S., Choi, Y. L., Yang, J. K., Koduru, J. R., & Chang, Y. Y. (2019). Green activated magnetic graphitic carbon oxide and its application for hazardous water pollutants removal. Metals, 9(9). https://doi.org/10.3390/met9090935
Mendeley helps you to discover research relevant for your work.