A Salmonella type III effector, PipA, works in a different manner than the PipA family effectors GogA and GtgA

11Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Nuclear factor-kappa B (NF-κB) plays a critical role in the host defense against microbial pathogens. Many pathogens modulate NF-κB signaling to establish infection in their host. Salmonella enterica serovar Typhimurium (S. Typhimurium) possesses two type III secretion systems (T3SS-1 and T3SS-2) and directly injects many effector proteins into host cells. It has been reported that some effectors block NF-κB signaling, but the molecular mechanism of the inactivation of NF-κB signaling in S. Typhimurium is poorly understood. Here, we identified seven type III effectors-GogA, GtgA, PipA, SseK1, SseK2, SseK3, and SteE-that inhibited NF-κB activation in HeLa cells stimulated with TNF-α. We also determined that only GogA and GtgA are involved in regulation of the activation of NF-κB in HeLa cells infected with S. Typhimurium. GogA, GtgA, and PipA are highly homologous to one another and have the consensus zinc metalloprotease HEXXH motif. Our experiments demonstrated that GogA, GtgA, and PipA each directly cleaved NF-κB p65, whereas GogA and GtgA, but not PipA, inhibited the NF-κB activation in HeLa cells infected with S. Typhimurium. Further, expressions of the gogA or gtgA gene were induced under the SPI-1-and SPI-2-inducing conditions, but expression of the pipA gene was induced only under the SPI-2-inducing condition. We also showed that PipA was secreted into RAW264.7 cells through T3SS-2. Finally, we indicated that PipA elicits bacterial dissemination in the systemic stage of infection of S. Typhimurium via a T3SS-1-independent mechanism. Collectively, our results suggest that PipA, GogA and GtgA contribute to S. Typhimurium pathogenesis in different ways.

Cite

CITATION STYLE

APA

Takemura, M., Haneda, T., Idei, H., Miki, T., & Okada, N. (2021). A Salmonella type III effector, PipA, works in a different manner than the PipA family effectors GogA and GtgA. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248975

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free