Machine learning-based prediction of korean triage and acuity scale level in emergency department patients

45Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Objectives: Triage is a process to accurately assess and classify symptoms to identify and provide rapid treatment to patients. The Korean Triage and Acuity Scale (KTAS) is used as a triage instrument in all emergency centers. The aim of this study was to train and compare machine learning models to predict KTAS levels. Methods: This was a cross-sectional study using data from a single emergency department of a tertiary university hospital. Information collected during triage was used in the analysis. Logistic regression, random forest, and XGBoost were used to predict the KTAS level. Results: The models with the highest area under the receiver operating characteristic curve (AUROC) were the random forest and XGBoost models trained on the entire dataset (AUROC = 0.922, 95% confidence interval 0.917–0.925 and AUROC = 0.922, 95% confidence interval 0.918–0.925, respectively). The AUROC of the models trained on the clinical data was higher than that of models trained on text data only, but the models trained on all variables had the highest AUROC among similar machine learning models. Conclusions: Machine learning can robustly predict the KTAS level at triage, which may have many possibilities for use, and the addition of text data improves the predictive performance compared to that achieved by using structured data alone.

Cite

CITATION STYLE

APA

Choi, S. W., Ko, T., Hong, K. J., & Kim, K. H. (2019). Machine learning-based prediction of korean triage and acuity scale level in emergency department patients. Healthcare Informatics Research, 25(4), 305–312. https://doi.org/10.4258/hir.2019.25.4.305

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free