Plants continually adjust the photosynthetic functions in their leaves to fluctuating light, thereby optimizing the use of photosynthetic nitrogen (Nph) at the canopy level. To investigate the complex interplay between external signals during the acclimation processes, a mechanistic model based on the concept of protein turnover (synthesis and degradation) was proposed and parameterized using cucumber grown under nine combinations of nitrogen and light in growth chambers. Integrating this dynamic model into a multi-layer canopy model provided accurate predictions of photosynthetic acclimation of greenhouse cucumber canopies grown under high and low nitrogen supply in combination with day-to-day fluctuations in light at two different levels. This allowed us to quantify the degree of optimality in canopy nitrogen use for maximizing canopy carbon assimilation, which was influenced by Nph distribution along canopy depth or Nph partitioning between functional pools. Our analyses suggest that Nph distribution is close to optimum and Nph reallocation is more important under low nitrogen. Nph partitioning is only optimal under a light level similar to the average light intensity during acclimation, meaning that day-to-day light fluctuations inevitably result in suboptimal Nph partitioning. Our results provide insights into photoacclimation and can be applied to crop model improvement.
CITATION STYLE
Pao, Y. C., Chen, T. W., Moualeu-Ngangue, D. P., & Stützel, H. (2019). Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy. Journal of Experimental Botany, 70(9), 2419–2433. https://doi.org/10.1093/jxb/ery308
Mendeley helps you to discover research relevant for your work.