Agglomerate and reuse limit the promising application of silver nanoparticles (AgNPs) as catalyst. To eliminate those disadvantages, herein, Fe-containing silica nanowires (SiO2NWs) and reduced graphene oxide (RGO) are used as suitable substrates to prepare AgNPs/SiO2NWs/RGO nanocomposite via self-assembly approach. The nanocomposite mostly assembled with each other via intermolecular hydrogen bond and electrostatic adsorption to form a three-dimensional network structure. The AgNPs/SiO2NWs/RGO nanocomposite exhibit excellent photocatalytic activity for 4-nitrophenol reduction by NaBH4, originating from that the nearly mono-dispersed AgNPs are adhered on the surface of the SiO2NWs and RGO, allowing the effective contact of reactants with catalyst and facilitating the electron transfer between them in the reaction. The obtained nanocomposites exhibit the superior stability and can be easily recovered with their fully catalytic activities due to the hydrophobic and magnetic properties of the nanocomposites. It shows the great prospect for the 4-NP reduction in practice and is promising for wide applications in visible light catalytic reaction.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Chen, X., Lei, J., Wang, Y., Zhu, W., Yao, W., & Duan, T. (2019). Ternary Ag nanoparticles/natural-magnetic SiO2-nanowires/reduced graphene oxide nanocomposites with highly visible photocatalytic activity for 4-nitrophenol reduction. SN Applied Sciences, 1(1). https://doi.org/10.1007/s42452-018-0124-6