Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris

34Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Commercial usage of ZnO nanoparticles has increased recently due to its versatile applications, raising serious environmental concern because of its ultimate release of nanoparticles in aquatic ecosystem. Therefore, it is important to understand the impact of ZnO nanoparticle toxicity especially on algal flora, which is the primary producer in the aquatic food chain. In the current study, algal growth kinetics was assessed after the exposure of zinc oxide nanoparticles and its bulk counterpart to Coelastrella terrestris (Chlorophyceae). Zinc oxide nanoparticles were found to be more toxic (y = 34.673x, R2 = − 0.101, 1 mg L−1 nanoparticle (NP)) than bulk (y = 50.635x, R2 = 0.173, 1 mg L−1 bulk) by entrapping the algal cell surface. Higher toxicity may be due to oxidative stress within the algal cell as confirmed through biochemical analysis. Biochemical parameters revealed stressful physiological condition in the alga under nanoparticle exposure, as lactate dehydrogenase release (18.89 ± 0.2 NP; 13.67 ± 0.2 bulk), lipid peroxidation (0.9147 ± 1.2 NP; 0.7480 ± 0.8 bulk), and catalase activity (4.77 ± 0.1 NP; 3.32 ± 0.1 bulk) were found higher at 1 mg L−1 in the case of nano-form. Surface adsorptions of nanoparticles were observed by SEM. Cell organelle damage, cell wall breakage, and cytoplasm shrinkage were found as responses under toxic condition through SEM and TEM. Toxicity was found to be influenced by dose concentration and exposure period. This study indicates that nano-form of ZnO is found to be more toxic than bulk form to freshwater alga.

Cite

CITATION STYLE

APA

Saxena, P., & Harish. (2019). Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris. Environmental Science and Pollution Research, 26(26), 26991–27001. https://doi.org/10.1007/s11356-019-05844-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free