Building extraction is an important way to obtain information in urban planning, land management, and other fields. As remote sensing has various advantages such as large coverage and real-time capability, it becomes an essential approach for building extraction. Among various remote sensing technologies, the capability of providing 3D features makes the LiDAR point cloud become a crucial means for building extraction. However, the LiDAR point cloud has difficulty distinguishing objects with similar heights, in which case texture features are able to extract different objects in a 2D image. In this paper, a building extraction method based on the fusion of point cloud and texture features is proposed, and the texture features are extracted by using an elevation map that expresses the height of each point. The experimental results show that the proposed method obtains better extraction results than that of other texture feature extraction methods and ENVI software in all experimental areas, and the extraction accuracy is always higher than 87%, which is satisfactory for some practical work.
CITATION STYLE
Lai, X., Yang, J., Li, Y., & Wang, M. (2019). A building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features. Remote Sensing, 11(14). https://doi.org/10.3390/rs11141636
Mendeley helps you to discover research relevant for your work.