Different techniques that enable the selective microstructure design of aerogels without the use of additives are presented. For this, aerogels were prepared from platinum nanoparticle solutions using the cryoaerogelation method, and respective impacts of different freezing times, freezing media, and freezing temperatures were investigated with electron microscopy as well as inductively coupled plasma optical emission spectroscopy. The use of lower freezing temperatures, freezing media with higher heat conductivities, and longer freezing periods led to extremely different network structures with enhanced stability. In detail, materials were created in the shape of lamellar, cellular, and dendritic networks. So far, without changing the building blocks, it was not possible to create the selective morphologies of resulting aerogels in cryoaerogelation. Now, these additive-free approaches enable targeted structuring and will open up new opportunities in the future cryoaerogel design.
CITATION STYLE
Müller, D., Klepzig, L. F., Schlosser, A., Dorfs, D., & Bigall, N. C. (2021). Structural Diversity in Cryoaerogel Synthesis. Langmuir, 37(17), 5109–5117. https://doi.org/10.1021/acs.langmuir.0c03619
Mendeley helps you to discover research relevant for your work.