Blood flow rheology is a complex phenomenon. Presently there is no universally agreed upon model to represent the viscous property of blood. However, under the general classification of non-Newtonian models that simulate blood behavior to different degrees of accuracy, there are many variants. The power law, Casson and Carreau models are popular non-Newtonian models and affect hemodynamics quantities under many conditions. In this study, the finite volume method is used to investigate hemodynamics predictions of each of the models. To implementthe finite volume method, the computational fluid dynamics software Fluent 6.1 is used. In this numerical study the different hemorheological models are found to predict different results of hemodynamics variables which are known to impact the genesis of atherosclerosis and formation of thrombosis. The axial velocity magnitude percentage difference of Up to 2 % and radial velocity difference up to 90 % is found at different sections of the T-junction geometry. The size of flow recirculation zones and their associated separation and reattachment point's locations differ for each model. The wall shear stress also experiences up to 12 % shift in the main tube. A velocity magnitude distribution of the grid cells shows that the Newtonian model is close dynamically to the Casson model while the power law model resembles the Carreau model. © Appl. Rheol.
CITATION STYLE
Shibeshi, S. S., & Collins, W. E. (2005). The rheology of blood flow in a branced arterial system. Applied Rheology, 15(6), 398–405. https://doi.org/10.1515/arh-2005-0020
Mendeley helps you to discover research relevant for your work.