Fusarium head blight (FHB) is one of the most important diseases in wheat worldwide. Evaluation and identification of effective fungicides are essential for control of FHB. However, traditional methods based on the manual disease severity assessment to evaluate the efficacy of fungicides are time-consuming and laborsome. In this study, we developed a new method to rapidly assess the severity of FHB and evaluate the efficacy of fungicide application programs. Enhanced red-green-green (RGG) images were processed from acquired raw red-green-blue (RGB) images of wheat ear samples; the images were transformed in color spaces through K-means clustering for rough segmentation of wheat ears; a random forest classifier was used with features of color, texture, geometry and vegetation index for fine segmentation of disease spots in wheat ears; a newly proposed width mutation counting algorithm was used to count wheat ears; and the disease severity of the wheat ears groups was graded and the efficacy of six fungicides was evaluated. The results show that the segmentation algorithm could segment wheat ears from a complex field background. And the counting algorithm could effectively solve the problem of wheat ear adhesion and occlusion. The average counting accuracy of all and diseased wheat ears were 93.00% and 92.64%, respectively, with the coefficients of determination (R2) of 0.90 and 0.98, and the root mean square error (RMSE) of 10.56 and 7.52, respectively. The new method could accurately assess the diseased levels of wheat eat groups infected by FHB and determine the efficacy of the six fungicides evaluated. The results demonstrate a potential of using digital imaging technology to evaluate and identify effective fungicides for control of the FHB disease in wheat and other crop diseases.
CITATION STYLE
Zhang, D., Wang, Z., Jin, N., Jin, N., Gu, C., Chen, Y., & Huang, Y. (2020). Evaluation of Efficacy of Fungicides for Control of Wheat Fusarium Head Blight Based on Digital Imaging. IEEE Access, 8, 109876–109890. https://doi.org/10.1109/ACCESS.2020.3001652
Mendeley helps you to discover research relevant for your work.