Ral GTPases Regulate Exocyst Assembly through Dual Subunit Interactions

188Citations
Citations of this article
144Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ral GTPases have been implicated in the regulation of a variety of dynamic cellular processes including proliferation, oncogenic transformation, actin-cytoskeletal dynamics, endocytosis, and exocytosis. Recently the Sec6/8 complex, or exocyst, a multisubunit complex facilitating post-Golgi targeting of distinct subclasses of secretory vesicles, has been identified as a bona fide Ral effector complex. Ral GTPases regulate exocyst-dependent vesicle trafficking and are required for exocyst complex assembly. Sec5, a membrane-associated exocyst subunit, has been identified as a direct target of activated Ral; however, the mechanism by which Ral can modulate exocyst assembly is unknown. Here we report that an additional component of the exocyst, Exo84, is a direct target of activated Ral. We provide evidence that mammalian exocyst components are present as distinct subcomplexes on vesicles and the plasma membrane and that Ral GTPases regulate the assembly interface of a full octameric exocyst complex through interaction with Sec5 and Exo84.

Cite

CITATION STYLE

APA

Moskalenko, S., Tong, C., Rosse, C., Mirey, G., Formstecher, E., Daviet, L., … White, M. A. (2003). Ral GTPases Regulate Exocyst Assembly through Dual Subunit Interactions. Journal of Biological Chemistry, 278(51), 51743–51748. https://doi.org/10.1074/jbc.M308702200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free