Mutations in Saccharomyces cerevisiae that block meiotic prophase chromosome metabolism and confer cell cycle arrest at pachytene identify two new meiosis-specific genes SAE1 and SAE3

52Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Two new meiosis-specific genes, SAE1 and SAE3, have been identified in a screen for mutations that confer an intermediate block in meiotic prophase. Such mutations confer a block to spore formation that is circumvented by addition of a mutation that eliminates meiotic recombination initiation and other aspects of chromosome metabolism, i.e., spo11. We show that sae1-1 and sae3-1 mutations each confer a distinct defect in meiotic recombination, sae1-1 produces recombinants but very slowly and ultimately to less than half the wild-type level; sae3-1 makes persistent hyper-resected meiotic double- strand breaks and has a severe defect in formation of recombinants. Both mutants arrest at the pachytene stage of meiotic prophase, sae1-1 temporarily and sae3-1 permanently. The phenotypes conferred by sae3-1 are similar to those conferred by mutation of the yeast RecA homologue DMC1, suggesting that SAE3 and DMC1 act at the same step(s) of chromosome metabolism cause cell- cycle arrest. SAE1 encodes a 208-residue protein homologous to vertebrate mRNA cap-binding protein 20. SAE3 corresponds to a meiosis-specific RNA encoding an unusually short open reading frame of 50 codons.

Cite

CITATION STYLE

APA

McKee, A. H. Z., & Kleckner, N. (1997). Mutations in Saccharomyces cerevisiae that block meiotic prophase chromosome metabolism and confer cell cycle arrest at pachytene identify two new meiosis-specific genes SAE1 and SAE3. Genetics, 146(3), 817–834. https://doi.org/10.1093/genetics/146.3.817

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free