Detection and classification of power quality disturbances in power system using modified-combination between the stockwell transform and decision tree methods

42Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

The detection, mitigation, and classification of power quality (PQ) disturbances have been issues of interest in the power system field. This paper proposes an approach to detect and classify various types of PQ disturbances based on the Stockwell transform (ST) and decision tree (DT) methods. At first, the ST is developed based on the moving, localizing, and scalable Gaussian window to detect five statistical features of PQ disturbances such as the high frequency of oscillatory transient, distinction between stationary and non-stationary, the voltage amplitude oscillation around an average value, the existence of harmonics in a disturbance signal, and the root mean square voltage at the internal period of sag, swell or interruption. Then, these features are classified into nine types, such as normal, sag, swell, interruption, harmonic, flicker, oscillatory transient, harmonic voltage sag, and harmonic voltage swell by using the DT algorithm that is based on a set of rules with the structure "if...then". This proposed study is simulated using MATLAB simulation. The IEEE 13-bus system, the recorded real data based on PQube, and the experiment based on the laboratory environment are applied to verify the effectiveness.

Cite

CITATION STYLE

APA

Khoa, N. M., & Van Dai, L. (2020). Detection and classification of power quality disturbances in power system using modified-combination between the stockwell transform and decision tree methods. Energies, 13(14). https://doi.org/10.3390/en13143623

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free