The effects of selected factors, wood species (Fagus sylvatica L. and Picea abies L.), type of joint (haunched mortise and tenon, and haunched dovetail mortise and tenon), tenon thickness (one-third and half-joint thickness), type of adhesive (polyvinyl acetate and polyurethane adhesive), loading type (compressive and tensile), and direction of the annual rings were evaluated relative to the elastic stiffness. The testing samples were loaded by bending moment with tensile and compressive forces in the angular plane. The wood species, type of joint, tenon dimension, and type of adhesive all had a statistically significant effect on the elastic stiffness. However, the interaction of those factors was statistically insignificant. The loading type and direction of the annual rings did not have a significant effect on the elastic stiffness. For spruce, the use of mortise and tenon with a toothed feather (MTTF) was found to be disadvantageous, whereas the use of a toothed feather was favorable for beech. Half thickness of the joint was always an advantage, such that the stiffness increased. For spruce joints, the type of glue was not important, whereas for beech, the stiffness of joints glued with PVAc was significantly higher than with PUR adhesive.
CITATION STYLE
Záborskỳ, V., Boruvka, V., Kašicková, V., & Ruman, D. (2017). Effect of wood species, adhesive type, and annual ring directions on the stiffness of rail to leg mortise and tenon furniture joints. BioResources, 12(4), 7016–7031. https://doi.org/10.15376/biores.12.4.7016-7031
Mendeley helps you to discover research relevant for your work.