A polymerase chain reaction (PCR) assay was developed and compared with standard methods for rapid detection of Burkholderia cepacia, a major industrial contaminant, in cosmetic and pharmaceutical raw materials and finished products. Artificially contaminated samples were incubated for 24 h in trypticase soy broth containing 4% Tween 20 and 0.5% soy lecithin. DNA was extracted from each sample using a proteinase K-tris-EDTA-Tween 20 treatment at 35°C. The extracted DNA was added to Ready-To-Go PCR beads and specific DNA primers for B. cepacia. The B. cepacia DNA primers coded for a 209-base pair (bp) fragment of the 16S rRNA ribosomal gene. No DNA amplification was observed in samples that were not spiked with B. cepacia. However, all contaminated samples showed the specific 209-bp fragment for B. cepacia. There was a 100% correlation between standard methods and the PCR assay. Standard microbiological methods required 5-6 days for isolation and identification of spiked microorganisms, whereas PCR detection and identification was completed in 27 h. PCR detection of B. cepacia allows for rapid quality evaluation of cosmetic and pharmaceutical raw materials and finished products.
CITATION STYLE
Jimenez, L., & Smalls, S. (2000). Molecular detection of Burkholderia cepacia in toiletry, cosmetic, and pharmaceutical raw materials and finished products. Journal of AOAC International, 83(4), 963–966. https://doi.org/10.1093/jaoac/83.4.963
Mendeley helps you to discover research relevant for your work.