Tuning defects in oxides at room temperature by lithium reduction

507Citations
Citations of this article
195Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Defects can greatly influence the properties of oxide materials; however, facile defect engineering of oxides at room temperature remains challenging. The generation of defects in oxides is difficult to control by conventional chemical reduction methods that usually require high temperatures and are time consuming. Here, we develop a facile room-temperature lithium reduction strategy to implant defects into a series of oxide nanoparticles including titanium dioxide (TiO2), zinc oxide (ZnO), tin dioxide (SnO2), and cerium dioxide (CeO2). Our lithium reduction strategy shows advantages including all-room-temperature processing, controllability, time efficiency, versatility and scalability. As a potential application, the photocatalytic hydrogen evolution performance of defective TiO2 is examined. The hydrogen evolution rate increases up to 41.8 mmol g-1 h-1 under one solar light irradiation, which is ~3 times higher than that of the pristine nanoparticles. The strategy of tuning defect oxides used in this work may be beneficial for many other related applications.

Cite

CITATION STYLE

APA

Ou, G., Xu, Y., Wen, B., Lin, R., Ge, B., Tang, Y., … Li, Y. (2018). Tuning defects in oxides at room temperature by lithium reduction. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03765-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free