Novel polymorphisms of nuclear receptor SHP associated with functional and structural changes

40Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We identified three heterozygous nonsynonymous single nucleotide polymorphisms in the small heterodimer partner (SHP, NROB2) gene in normal subjects and CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)-like patients, including two novel missense mutations (p.R38H, p.K170N) and one of the previously reported polymorphism (p.G171A). Four novel heterozygous mutations were also identified in the intron (Intron1265T→A), 3′-untranslated region ( 3′-UTR101C→G, 3′-UTR186T→C), and promoter (Pro-423C→T) of the SHP gene. The exonic R38H and K170N mutants exhibited impaired nuclear translocation. K170N made SHP more susceptible to ubiquitination mediated degradation and blocked SHP acetylation, which displayed lost repressive activity on its interacting partners ERRγ and HNF4α but not LRH-1. In contrast, G171A increased SHP mRNA and protein expression and maintained normal function. In general, the interaction of SHP mutants with LRH-1 and EID1 was enhanced. K170N also markedly impaired the recruitment of SHP, HNF4α, HDAC1, and HDAC3 to the apoCIII promoter. Molecular dynamics simulations of SHP showed that G171A stabilized the nuclear receptor boxes, whereas K170N promoted the conformational destabilization of all the structural elements of the receptor. This study suggests that genetic variations in SHP are common among human subjects and the Lys-170 residue plays a key role in controlling SHP ubiquitination and acetylation associated with SHP protein stability and repressive function. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Zhou, T., Zhang, Y., Macchiarulo, A., Yang, Z., Cellanetti, M., Coto, E., … Wang, L. (2010). Novel polymorphisms of nuclear receptor SHP associated with functional and structural changes. Journal of Biological Chemistry, 285(32), 24871–24881. https://doi.org/10.1074/jbc.M110.133280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free